Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Commun ; : 100893, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38581128

RESUMEN

Transitory starch is an important carbon source in leaves, and its biosynthesis and metabolism are closely related to grain quality and yield. The molecular mechanisms controlling leaf transitory starch biosynthesis and degradation and their effects on rice (Oryza sativa) quality and yield remain unclear. Here, we show that OsLESV and OsESV1, the rice orthologs of AtLESV and AtESV1, are associated with transitory starch biosynthesis in rice. The total starch and amylose contents in leaves and endosperms are significantly reduced, and the final grain quality and yield are compromised in oslesv and osesv1 single and oslesv esv1 double mutants. Furthermore, we found that OsLESV and OsESV1 bind to starch, and this binding depends on a highly conserved C-terminal tryptophan-rich region that acts as a starch-binding domain. Importantly, OsLESV and OsESV1 also interact with the key enzymes of starch biosynthesis, granule-bound starch synthase I (GBSSI), GBSSII, and pyruvate orthophosphote dikiase (PPDKB), to maintain their protein stability and activity. OsLESV and OsESV1 also facilitate the targeting of GBSSI and GBSSII from plastid stroma to starch granules. Overexpression of GBSSI, GBSSII, and PPDKB can partly rescue the phenotypic defects of the oslesv and osesv1 mutants. Thus, we demonstrate that OsLESV and OsESV1 play a key role in regulating the biosynthesis of both leaf transitory starch and endosperm storage starch in rice. These findings deepen our understanding of the molecular mechanisms underlying transitory starch biosynthesis in rice leaves and reveal how the transitory starch metabolism affects rice grain quality and yield, providing useful information for the genetic improvement of rice grain quality and yield.

2.
BMC Plant Biol ; 24(1): 196, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494545

RESUMEN

BACKGROUND: Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS: The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS: The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.


Asunto(s)
Endospermo , Oryza , Endospermo/metabolismo , Almidón/metabolismo , Semillas/genética , Grano Comestible/genética , Homeostasis , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Nat Commun ; 15(1): 1134, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326370

RESUMEN

Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 (SDR3.1) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs. In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.


Asunto(s)
Oryza , Latencia en las Plantas , Latencia en las Plantas/genética , Mapeo Cromosómico , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Fenotipo , Semillas/genética
4.
Rice (N Y) ; 17(1): 8, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38228921

RESUMEN

As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.

5.
Plant Biotechnol J ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38245899

RESUMEN

Head rice yield (HRY) measures rice milling quality and determines final grain yield and commercial value. Here, we report that two major quantitative trait loci for milling quality in rice, qMq-1 and qMq-2, represent allelic variants of Waxylv /Waxyb (hereafter Wx) encoding Granule-Bound Starch Synthase I (GBSSI) and Alkali Spreading Value ALKc /ALKb encoding Soluble Starch Synthase IIa (SSIIa), respectively. Complementation and overexpression transgenic lines in indica and japonica backgrounds confirmed that Wx and ALK coordinately regulate HRY by affecting amylose content, the number of amylopectin branches, amyloplast size, and thus grain filling and hardness. The transcription factor OsDOF18 acts upstream of Wx and ALK by activating their transcription. Furthermore, rice accessions with Wxb and ALKb alleles showed improved HRY over those with Wxlv and ALKc . Our study not only reveals the novel molecular mechanism underlying the formation of HRY but also provides a strategy for breeding rice cultivars with improved HRY.

6.
Plants (Basel) ; 12(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38068705

RESUMEN

High temperatures accelerate the accumulation of storage material in seeds, often leading to defects in grain filling. However, the mechanisms regulating grain filling at high temperatures remain unknown. Here, we want to explore the quality factors influenced by the environment and have identified a LATE EMBROYGENESIS ABUNDANT gene, OsLEA1b, a heat-stress-responsive gene in rice grain filling. OsLEA1b is highly expressed in the endosperm, and its coding protein localizes to the nucleus and cytoplasm. Knock-out mutants of OsLEA1b had abnormal compound starch granules in endosperm cells and chalky endosperm with significantly decreased grain weight and grain number per panicle. The oslea1b mutants exhibited a lower proportion of short starch chains with degrees of polymerization values from 6 to 13 and a higher proportion of chains with degrees from 14 to 48, as well as significantly lower contents of starch, protein, and lipid compared to the wild type. The difference was exacerbated under high temperature conditions. Moreover, OsLEA1b was induced by drought stress. The survival rate of oslea1b mutants decreased significantly under drought stress treatment, with significant increase in ROS levels. These results indicate that OsLEA1b regulates starch biosynthesis and influences rice grain quality, especially under high temperatures. This provides a valuable resource for genetic improvement in rice grain quality.

7.
Rice (N Y) ; 16(1): 39, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688677

RESUMEN

Climate change has significantly affected agriculture production, particularly the rice crop that is consumed by almost half of the world's population and contributes significantly to global food security. Rice is vulnerable to several abiotic and biotic stresses such as drought, heat, salinity, heavy metals, rice blast, and bacterial blight that cause huge yield losses in rice, thus threatening food security worldwide. In this regard, several plant breeding and biotechnological techniques have been used to raise such rice varieties that could tackle climate changes. Nowadays, gene editing (GE) technology has revolutionized crop improvement. Among GE technology, CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) system has emerged as one of the most convenient, robust, cost-effective, and less labor-intensive system due to which it has got more popularity among plant researchers, especially rice breeders and geneticists. Since 2013 (the year of first application of CRISPR/Cas-based GE system in rice), several trait-specific climate-resilient rice lines have been developed using CRISPR/Cas-based GE tools. Earlier, several reports have been published confirming the successful application of GE tools for rice improvement. However, this review particularly aims to provide an updated and well-synthesized brief discussion based on the recent studies (from 2020 to present) on the applications of GE tools, particularly CRISPR-based systems for developing CRISPR rice to tackle the current alarming situation of climate change, worldwide. Moreover, potential limitations and technical bottlenecks in the development of CRISPR rice, and prospects are also discussed.

8.
Front Plant Sci ; 14: 1222288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554558

RESUMEN

3-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for the synthesis of very long-chain fatty acids (VLCFAs) in plants, which determines the carbon chain length of VLCFAs. However, a comprehensive study of KCSs in Oryza sativa has not been reported yet. In this study, we identified 22 OsKCS genes in rice, which are unevenly distributed on nine chromosomes. The OsKCS gene family is divided into six subclasses. Many cis-acting elements related to plant growth, light, hormone, and stress response were enriched in the promoters of OsKCS genes. Gene duplication played a crucial role in the expansion of the OsKCS gene family and underwent a strong purifying selection. Quantitative Real-time polymerase chain reaction (qRT-PCR) results revealed that most KCS genes are constitutively expressed. We also revealed that KCS genes responded differently to exogenous cadmium stress in japonica and indica background, and the KCS genes with higher expression in leaves and seeds may have functions under cadmium stress. This study provides a basis for further understanding the functions of KCS genes and the biosynthesis of VLCFA in rice.

9.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047061

RESUMEN

Dormancy is a complex agronomy phenotype controlled by multiple signaling and a key trait repressing pre-harvest sprouting (PHS). However, the signaling network of dormancy remains unclear. In this study, we used Zhonghua11 (ZH11) with a weak dormancy, and Introgression line (IL) with a strong dormancy to study the mechanism of hormones and reactive oxygen species (ROS) crosstalk regulating rice dormancy. The germination experiment showed that the germination rate of ZH11 was 76.86%, while that of IL was only 1.25%. Transcriptome analysis showed that there were 1658 differentially expressed genes (DEGs) between IL and ZH11, of which 577 were up-regulated and 1081 were down-regulated. Additionally, DEGs were mainly enriched in oxidoreductase activity, cell periphery, and plant hormone signal transduction pathways. Tandem mass tags (TMT) quantitative proteomics analysis showed 275 differentially expressed proteins (DEPs) between IL and ZH11, of which 176 proteins were up-regulated, 99 were down-regulated, and the DEPs were mainly enriched in the metabolic process and oxidation-reduction process. The comprehensive transcriptome and proteome analysis showed that their correlation was very low, and only 56 genes were co-expressed. Hormone content detection showed that IL had significantly lower abscisic acid (ABA) contents than the ZH11 while having significantly higher jasmonic acid (JA) contents than the ZH11. ROS content measurement showed that the hydrogen peroxide (H2O2) content of IL was significantly lower than the ZH11, while the production rate of superoxide anion (O2.-) was significantly higher than the ZH11. These results indicate that hormones and ROS crosstalk to regulate rice dormancy. In particular, this study has deepened our mechanism of ROS and JA crosstalk regulating rice dormancy and is conducive to our precise inhibition of PHS.


Asunto(s)
Oryza , Especies Reactivas de Oxígeno/metabolismo , Oryza/genética , Oryza/metabolismo , Transcriptoma , Proteoma/metabolismo , Latencia en las Plantas/genética , Peróxido de Hidrógeno/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499684

RESUMEN

Pyruvate kinase (PK) is one of the three rate-limiting enzymes of glycolysis, and it plays a pivotal role in energy metabolism. In this study, we have identified 10 PK genes from the rice genome. Initially, these genes were divided into two categories: cytoplasmic pyruvate kinase (PKc) and plastid pyruvate kinase (PKp). Then, an expression analysis revealed that OsPK1, OsPK3, OsPK4, OsPK6, and OsPK9 were highly expressed in grains. Moreover, PKs can form heteropolymers. In addition, it was found that ABA significantly regulates the expression of PK genes (OsPK1, OsPK4, OsPK9, and OsPK10) in rice. Intriguingly, all the genes were found to be substantially involved in the regulation of rice grain quality and yield. For example, the disruption of OsPK3, OsPK5, OsPK7, OsPK8, and OsPK10 and OsPK4, OsPK5, OsPK6, and OsPK10 decreased the 1000-grain weight and the seed setting rate, respectively. Further, the disruption of OsPK4, OsPK6, OsPK8, and OsPK10 through the CRISPR/Cas9 system showed an increase in the content of total starch and a decrease in protein content compared to the WT. Similarly, manipulations of the OsPK4, OsPK8, and OsPK10 genes increased the amylose content. Meanwhile, the grains of all CRISPR mutants and RNAi lines, except ospk6, showed a significant increase in the chalkiness rate compared to the wild type. Overall, this study characterizes the functions of all the genes of the PK gene family and shows their untapped potential to improve rice yield and quality traits.


Asunto(s)
Oryza , Oryza/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
11.
Plants (Basel) ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432867

RESUMEN

Zinc (Zn) is an essential micronutrient for rice, but it is toxic at a high concentration, especially in acid soils. It is yet unknown which genes regulate Zn tolerance in rice. In the present study, a genome-wide association study (GWAS) was performed for Zn tolerance in rice at the seedling stage within a rice core collection, named Ting's core collection, which showed extensive phenotypic variations in Zn toxicity with high-density single-nucleotide polymorphisms (SNPs). A total of 7 and 19 quantitative trait loci (QTL) were detected using root elongation (RE) and relative root elongation (RRE) under high Zn toxicity, respectively. Among them, 24 QTL were novel, and qRRE15 was located in the same region where 3 QTL were reported previously. In addition, qRE4 and qRRE9 were identical. Furthermore, we found eight candidate genes that are involved in abiotic and biotic stress, immunity, cell expansion, and phosphate transport in the loci of qRRE8, qRRE9, and qRRE15. Moreover, four candidate genes, i.e., Os01g0200700, Os06g0621900, Os06g0493600, and Os06g0622700, were verified correlating to Zn tolerance in rice by quantitative real time-PCR (qRT-PCR). Taken together, these results provide significant insight into the genetic basis for Zn toxicity tolerance and tolerant germplasm for developing rice tolerance to Zn toxicity and improving rice production in Zn-contaminated soils.

12.
Front Microbiol ; 13: 1004454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212817

RESUMEN

Fusarium proliferatum is the principal etiological agent of rice spikelet rot disease (RSRD) in China, causing yield losses and fumonisins contamination in rice. The intraspecific variability and evolution pattern of the pathogen is poorly understood. Here, we performed whole-genome resequencing of 67 F. proliferatum strains collected from major rice-growing regions in China. Population structure indicated that eastern population of F. proliferatum located in Yangtze River with the high genetic diversity and recombinant mode that was predicted as the putative center of origin. Southern population and northeast population were likely been introduced into local populations through gene flow, and genetic differentiation between them might be shaped by rice-driven domestication. A total of 121 distinct genomic loci implicated 85 candidate genes were suggestively associated with variation of fumonisin B1 (FB1) production by genome-wide association study (GWAS). We subsequently tested the function of five candidate genes (gabap, chsD, palA, hxk1, and isw2) mapped in our association study by FB1 quantification of deletion strains, and mutants showed the impact on FB1 production as compared to the wide-type strain. Together, this is the first study to provide insights into the evolution and adaptation in natural populations of F. proliferatum on rice, as well as the complex genetic architecture for fumonisins biosynthesis.

13.
Plant Commun ; 3(6): 100463, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36258666

RESUMEN

Starch and storage proteins are the main components of rice (Oryza sativa L.) grains. Despite their importance, the molecular regulatory mechanisms of storage protein and starch biosynthesis remain largely elusive. Here, we identified a rice opaque endosperm mutant, opaque3 (o3), that overaccumulates 57-kDa proglutelins and has significantly lower protein and starch contents than the wild type. The o3 mutant also has abnormal protein body structures and compound starch grains in its endosperm cells. OPAQUE3 (O3) encodes a transmembrane basic leucine zipper (bZIP) transcription factor (OsbZIP60) and is localized in the endoplasmic reticulum (ER) and the nucleus, but it is localized mostly in the nucleus under ER stress. We demonstrated that O3 could activate the expression of several starch synthesis-related genes (GBSSI, AGPL2, SBEI, and ISA2) and storage protein synthesis-related genes (OsGluA2, Prol14, and Glb1). O3 also plays an important role in protein processing and export in the ER by directly binding to the promoters and activating the expression of OsBIP1 and PDIL1-1, two major chaperones that assist with folding of immature secretory proteins in the ER of rice endosperm cells. High-temperature conditions aggravate ER stress and result in more abnormal grain development in o3 mutants. We also revealed that OsbZIP50 can assist O3 in response to ER stress, especially under high-temperature conditions. We thus demonstrate that O3 plays a central role in rice grain development by participating simultaneously in the regulation of storage protein and starch biosynthesis and the maintenance of ER homeostasis in endosperm cells.


Asunto(s)
Endospermo , Oryza , Endospermo/genética , Endospermo/metabolismo , Oryza/genética , Oryza/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Grano Comestible/metabolismo
14.
Toxins (Basel) ; 14(8)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36006230

RESUMEN

Fusarium proliferatum is the primary cause of spikelet rot disease in rice (Oryza sativa L.) in China. The pathogen not only infects a wide range of cereals, causing severe yield losses but also contaminates grains by producing various mycotoxins that are hazardous to humans and animals. Here, we firstly reported the whole-genome sequence of F. proliferatum strain Fp9 isolated from the rice spikelet. The genome was approximately 43.9 Mb with an average GC content of 48.28%, and it was assembled into 12 scaffolds with an N50 length of 4,402,342 bp. There is a close phylogenetic relationship between F. proliferatum and Fusarium fujikuroi, the causal agent of the bakanae disease of rice. The expansion of genes encoding cell wall-degrading enzymes and major facilitator superfamily (MFS) transporters was observed in F. proliferatum relative to other fungi with different nutritional lifestyles. Species-specific genes responsible for mycotoxins biosynthesis were identified among F. proliferatum and other Fusarium species. The expanded and unique genes were supposed to promote F. proliferatum adaptation and the rapid response to the host's infection. The high-quality genome of F. proliferatum strain Fp9 provides a valuable resource for deciphering the mechanisms of pathogenicity and secondary metabolism, and therefore shed light on development of the disease management strategies and detoxification of mycotoxins contamination for spikelet rot disease in rice.


Asunto(s)
Fumonisinas , Fusarium , Micotoxinas , Oryza , Fumonisinas/metabolismo , Fusarium/metabolismo , Humanos , Micotoxinas/genética , Micotoxinas/metabolismo , Oryza/microbiología , Filogenia , Metabolismo Secundario , Virulencia
15.
Front Plant Sci ; 13: 959859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923872

RESUMEN

The stigma exsertion rate (SER) is a complex agronomy phenotype controlled by multiple genes and climate and a key trait affecting the efficiency of hybrid rice seed production. Using a japonica two-line male sterile line (DaS) with a high SER as the donor and a tropical japonica rice (D50) with a low SER as the acceptor to construct a near-isogenic line [NIL (qSE4 DaS)]. Populations were segregated into 2,143 individuals of BC3F2 and BC4F2, and the stigma exsertion quantitative trait locus (QTL) qSE4 was determined to be located within 410.4 Kb between markers RM17157 and RM17227 on chromosome 4. Bioinformatic analysis revealed 13 candidate genes in this region. Sequencing and haplotype analysis indicated that the promoter region of LOC_Os04g43910 (ARF10) had a one-base substitution between the two parents. Further Reverse Transcription-Polymerase Chain Reaction (RT-PCR) analysis showed that the expression level of ARF10 in DaS was significantly higher than in D50. After knocking out ARF10 in the DaS background, it was found that the SER of arf10 (the total SER of the arf10-1 and the arf10-2 were 62.54 and 66.68%, respectively) was significantly lower than that of the wild type (the total SER was 80.97%). Transcriptome and hormone assay analysis showed that arf10 had significantly higher auxin synthesis genes and contents than the wild type and the expression of auxin signaling-related genes was significantly different, Similar results were observed for abscisic acid and jasmonic acid. These results indicate that LOC_Os04g43910 is mostly likely the target gene of qSE4, and the study of its gene function is of great significance for understanding the molecular mechanisms of SER and improving the efficiency of hybrid seed production.

16.
Food Chem ; 388: 132944, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35468460

RESUMEN

Rice starch properties of apparent amylose content (AAC), amylose content (AC), and amylopectin content (AP) are considered as the most important factors influencing grain quality as they are highly correlated with eating quality. This report is the first effort of predicting AC and AP values in rice flours, and recognizing waxy rice from non-waxy rice using NIRS technique. Calibration models generated by different mathematical, preprocessing treatments and combinations of wavelengths and signals were compared and optimized. The model established by modified partial least squares (MPLS) with "2, 8, 8, 2"/ Inverse MSC and ∼138 wavelengths signals yielded high RSQ of 0.977, 0.928, and 0.912 for AAC, AC and AP, respectively, as simultaneous measurement. MPLS-DA (discriminant analysis) could classify waxy and non-waxy rice with 100% accuracy. This high-throughput technology is valuable for breeding programs, and for the purposes of quality control in the food industry.


Asunto(s)
Amilosa , Oryza , Amilopectina/química , Amilosa/química , Oryza/química , Fitomejoramiento , Espectroscopía Infrarroja Corta , Almidón/química , Ceras
17.
Plant Biotechnol J ; 20(1): 59-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465003

RESUMEN

Aroma is a key grain quality trait that directly influences the market price of rice globally. Loss of function of betaine aldehyde dehydrogenase 2 (OsBADH2) affects the biosynthesis of 2-acetyl-1-pyrroline (2-AP), which is responsible for aroma in fragrant rice. The current study was aimed at creating new alleles of BADH2 using CRISPR/Cas9 gene editing technology under the genetic background of the japonica Ningjing 1 (NJ1) and indica Huang Huazhan (HHZ) varieties. Sensory evaluation and analysis using headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) showed that the grains of the four homozygous T1 lines with new alleles of BADH2 (nj1-cr BADH2 -1, nj1-cr BADH2 -2, hhz-cr BADH2 -1 and hhz-cr BADH2 -2) produced moderate fragrance and had significantly increased 2-AP content compared with wild-types. Moreover, there were no significant differences in the amylose content and gelatinization temperature among the four lines with new alleles of BADH2 to the wild-types. Thereafter, we crossed the HHZ background new alleles of BADH2 with CMS line Taonong 1A (TN1A) to produce a three-line hybrid variety B-Tao-You-Xiangzhan (BTYXZ) with increased grain aroma. The 2-AP content in grains of the improved BTYXZ-1 and BTYXZ-2 reached at 26.16 and 18.74 µg/kg, and the gel consistency of BTYXZ-1 and BTYXZ-2 increased significantly by 9.1% and 6.5%, respectively, compared with the wild-type Tao-You-Xiangzhan (TYXZ). However, the γ-aminobutyric acid (GABA) content in the improved three-line hybrid rice BTYXZ-1 (5.6 mg/100 g) and BTYXZ-2 (10.7 mg/100 g) was significantly lower than that of the TYXZ. These results demonstrated that CRISPR/Cas9 gene editing technology could be successfully utilized in improving aroma in non-fragrant japonica and indica varieties. In addition, the newly developed BADH2 alleles provided important genetic resources for grain aroma improvement in three-line hybrid rice.


Asunto(s)
Oryza , Alelos , Betaína Aldehído Deshidrogenasa/genética , Grano Comestible/genética , Odorantes , Oryza/genética , Fenotipo
18.
Mol Breed ; 41(10): 65, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34642568

RESUMEN

Yanfeng 47 (YF47) is an elite japonica rice variety cultivated in China on nearly 2 million hectares over the past 20 years. However, YF47 is highly susceptible to rice blast (Magnaporthe oryzae), one of the most destructive rice diseases. In this study, we developed novel TPAP (tetra-primer ARMS-PCR) functional markers for the genes Pita, Pib, and Pid2, all of which afford broad-spectrum resistance to blast. A collection of 91 japonica rice germplasms with similar ecological characteristics to YF47 were screened, and Wuyunjing 27 (WYJ27) with Pita and Pib alleles and P135 with the Pid2 allele were identified. Furthermore, the corresponding positive Pita, Pib, and Pid2 alleles were transferred into YF47 using single, mutual, and backcrosses, together with molecular marker-assisted selection (MAS) and anther culture technology. These genetic materials, carrying one, two, or three functional alleles, were generated within 3 years, and compared to YF47, they all showed improved resistance to naturally inoculated rice blast. Further improved lines (IL) 1 to 5 (all containing Pita, Pib, and Pid2 alleles) were evaluated for yield performance, and when no fungicide was applied, all lines except IL-4 showed increased traits compared with those of YF47. IL-5, renamed Yanjing 144 (YJ144), showed yield increases in the Liaoning province regional variety comparison test and superior appearance quality compared to YF47. Our work provides a molecular design strategy for pyramiding multiple beneficial genes to rapidly improve rice blast resistance, yield, and quality using multiple breeding strategies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11032-021-01259-4.

19.
Rice (N Y) ; 14(1): 74, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374880

RESUMEN

Long grain geng/japonica rice has a higher market preference due its excellent appearance quality. The dense and erect-panicle 1 (dep1) gene has been widely used in the breeding of high-yielding geng/japonica rice cultivars in China. However, this gene causes short and round grain shape thus making it less attractive in global rice markets. Therefore, breeding of high-yielding long-grain geng/japonica rice cultivars by incorporating dep1 with major-effect grain shape gene is of high priority in rice industry. Up to now, multiple grain shape genes' effect mechanism has been clearly elaborated, however, under the background of erect-panicle geng/japonica rice, the effect of major grain shape genes on the appearance quality need to be further clarified, as detailed reports are limited. Utilizing CRISPR/Cas9 technology, a series of near-isogenic lines (NILs) (YF47dep1-gw8, YF47dep1-gs3, YF47dep1-gl7, YF47dep1-qgl3 and YF47dep1-tgw6) in Yanfeng 47(YF47dep1) background were created. Grain appearance and yield components analysis showed that: (1) All NILs' grain length to width ratio was significantly increased compared to that of YF47dep1, excepted YF47dep1-gs3, (2) The chalkiness degree was significantly reduced in all of the NILs, (3) In all of the NILs, YF47dep1-gw8 grains exhibited the greatest length to width ratio and the lowest chalkiness degree, (4) The composition of glume cells and filling characteristics of the endosperm were two key factors contributing grain shape and grain chalk variations, respectively, and v) Owning to a substantial increase in the thousand grain weight, the yields of YF47dep1-gs3 and YF47dep1-tgw6 were significantly higher than that of YF47dep1, whereas YF47dep1-qgl3 exhibited the lowest yield because of a dramatic decrease in the effective panicle number and thousand grain weight. All the results revealed that pyramiding dep1 with major-effect grain shape alleles was an effective approach to improving the appearance quality of erect-panicle geng/japonica rice, owning to both of the appearance quality and yield improvement, GS3 and TGW6 alleles can be applied directly for breeding long-grain shape geng/japonica rice, and editing GW8 resulted in excellent appearance quality but low yield, therefore, this gene would be difficult to use directly but can be considered as the core germplasm resource.

20.
J Integr Plant Biol ; 63(10): 1724-1739, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34219386

RESUMEN

Pentatricopeptide repeat (PPR) proteins play important roles in the post-transcriptional modification of organellar RNAs in plants. However, the function of most PPR proteins remains unknown. Here, we characterized the rice (Oryza sativa L.) chlorophyll deficient 4 (cde4) mutant which exhibits an albino phenotype during early leaf development, with decreased chlorophyll contents and abnormal chloroplasts at low-temperature (20°C). Positional cloning revealed that CDE4 encodes a P-type PPR protein localized in chloroplasts. In the cde4 mutant, plastid-encoded polymerase (PEP)-dependent transcript levels were significantly reduced, but transcript levels of nuclear-encoded genes were increased compared to wild-type plants at 20°C. CDE4 directly binds to the transcripts of the chloroplast genes rpl2, ndhA, and ndhB. Intron splicing of these transcripts was defective in the cde4 mutant at 20°C, but was normal at 32°C. Moreover, CDE4 interacts with the guanylate kinase VIRESCENT 2 (V2); overexpression of V2 enhanced CDE4 protein stability, thereby rescuing the cde4 phenotype at 20°C. Our results suggest that CDE4 participates in plastid RNA splicing and plays an important role in rice chloroplast development under low-temperature conditions.


Asunto(s)
Cloroplastos/fisiología , Oryza/genética , Proteínas de Plantas/genética , Empalme del ARN , ARN del Cloroplasto/metabolismo , Proteínas de Arabidopsis , Clorofila/metabolismo , Guanilato-Quinasas/metabolismo , Oryza/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...